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Abstract 
Roll-to-roll atomic layer deposition (ALD) of TiO2 barrier films on polyethylene terephthalate (PET) web has 
recently been reported. This paper describes the extension of ALD roll-to-roll coating to Al2O3 barrier material on 
PET web. Water vapor transmission rate (WVTR) data for ALD Al2O3 films coated in a roll coater onto PET are 
provided. Comparative data on ALD Al2O3 barrier layers deposited on web material in a conventional ALD reactor 
are also presented.  
 

INTRODUCTION 
ALD Al2O3 has been reported to be an excellent barrier film on plastic web. These reports, however, 

have involved conventional ALD batch deposition onto stationary substrates [1-7]. In 2009 the first report of 
ALD barrier deposition in a roll-to-roll web coater appeared [8]. In that case the barrier material was TiO2. 
This paper extends the roll-to-roll web coater approach to Al2O3 barrier films.  

Single layer ALD Al2O3 has been shown to provide barrier properties superior to single layer 
evaporated, sputtered and even PECVD oxide films [6]. The critical layer thickness for ALD Al2O3 has been 
reported to be approximately 100 – 200Å [5].  Typical deposition temperatures for ALD Al2O3 barrier layers 
have been reported to be 100 °C or higher, although films with limited barrier properties have been reported 
as low as 58 °C [1].  

Preliminary studies of Al2O3 carried out in a conventional ALD reactor, as detailed below, verified that 
the barrier properties of Al2O3 improve as the deposition temperature is increased. In the case of plastic web, 
however, it is necessary to deposit the barrier film at temperatures compatible with the web. Even at the high 
end of the temperature range that is compatible with PET the purge times required between precursor pulses 
in a conventional cross-flow ALD reactor are very large. This paper describes the results of depositing Al2O3 
barrier films using a new ALD deposition approach tailored to roll-to-roll web coating. In this approach the 
web is transported between precursor zones that are separated by a purge zone. No precursor pulsing is 
required and purge times are eliminated owing to the fact that the web moves in and out of the precursor 
zones and the precursors do not need to be evacuated from these zones between cycles. The potential does 
exist, however, for excess precursor to be carried from one precursor zone to the other by the motion of the 
web. This effect has been observed and can affect the growth of the barrier film. Using this new web coating 
approach, ALD Al2O3 barrier layers have been grown on PET film that exhibit water vapor barrier 
properties comparable to ALD barriers reported from conventional cross-flow reactors.  
 

EQUIPMENT AND EXPERIMENTAL DETAILS 
Conventional Cross-Flow ALD Reactor.   

A conventional cross-flow ALD reactor consists of a vacuum chamber held at a specific temperature 
through which a steady stream of carrier gas flows. An ALD deposition cycle consists of injecting alternating 
precursors into this gas flow with purge times between precursor pulses sufficient to remove essentially all of 
each precursor from the volume of the reaction chamber before the start of the next precursor pulse. 
Following the evacuation of the precursor from the volume of the reaction chamber just a monolayer of that 
precursor is left on all surfaces within the chamber or the monolayer of the previous precursor has been fully 
reacted to form molecules of the compound being deposited. For Al2O3 the precursors are typically 
trimethylaluminum (TMA) and H2O. The total cycle time at higher temperatures (>200 °C) is on the order of 
10 seconds. At room temperature, the total cycle time is on the order of 100 seconds. Film thickness and 
deposition temperature splits as well as dose strength tests were carried out in the conventional ALD reactor 
as a baseline for the web coater results.  
ALD Web Coater.   

The ALD web coater described here overcomes the purge time issue by eliminating all pulsing of 
precursors. A test reactor was built to evaluate and develop this concept. It was used in two different modes, 
one referred to as band mode and one referred to as roll-to-roll mode. A schematic representation of the band 
mode is shown in Figure 1. In this configuration the web can be passed repeatedly through the precursor and 
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differences are mainly attributed to mechanical damage done to the barrier layer and web during the roll-to-
roll process.  

Web handling in this experimental web coater is rudimentary. The drive roller is powered by a simple 
electric motor with a manual speed control knob. Power is transferred from the motor shaft to the drive 
roller via a large O-ring wrapped around pulleys. The end of the web is taped to the drive roller and 
manually threaded through the system and over the various guide rollers. The guide rollers are all free- 
wheeling, solid steel rods of one inch diameter. The guide rollers are supported from one end by roller 
bearings. There is no control of acceleration or tension in the web. Furthermore, since the experimental web 
coater only has eight cycles (approximately eight Angstroms) per pass, the web must be wound and unwound 
multiple times to deposit thicker films. For example, the web must be wound from the source roller to the 
wind-up roller and back onto the source roller six times to deposit a film of approximately 100Å. The web is 
undoubtedly being dragged across itself each time it is wound and unwound from the spools. Due to these 
handling limitations of the experimental reactor, a great deal of mechanical damage to the web and barrier 
layer is believed to occur during the roll-to-roll runs, limiting the barrier performance of the film. These 
deleterious effects should be significantly reduced by a properly engineered web handling system. These 
effects might also be mitigated somewhat by using smoother starting web material or applying a smoothing 
layer to the rough web surface being used here.  
 

CONCLUSIONS 
ALD Al2O3 barrier layers deposited on PET web material utilizing a novel roll-to-roll deposition process 

have been demonstrated. At moderate web speeds, barrier performance comparable to the best so far 
reported has been achieved for films deposited in a conventional ALD reactor. In initial roll coater 
experiments the barrier film deposited in the band mode at 0.3 m/s or less achieved barrier performance 
similar to films deposited in a conventional reactor . At 0.5 m/s an offset of about 40Å was required to achieve 
the same performance. Barrier films deposited in true roll-to-roll mode at 0.15 m/s required an additional 
40Å thickness to achieve the same barrier properties achieved with similar films deposited in the band mode.  

Depositing good barrier films of Al2O3 at high web speeds has proved more challenging than depositing 
good barrier films of TiO2 at high speeds. Achieving improved Al2O3 barrier performance at higher web 
speeds will require improvements in the web handling mechanism, optimized precursor introduction and a 
reduction of excess H2O entering the TMA zone due to the moving web. Improvement of the web handling 
system should be a straightforward engineering exercise. Precursor introduction can be improved by 
applying standard techniques such as heating the precursor or injecting a carrier gas, using bubbler sources, 
etc. There are also several possible avenues to addressing the excess H2O issue. These include: 

1. Utilize azeotropes (alcohols, etc.) to help remove excess H2O or inhibit the reaction between the H2O 
vapor and the TMA 

2. Replace H2O with a precursor that does not tend to form excess adsorbed layers (O3, O2 plasma, 
etc.) 

3. Use a plasma in the purge zone to remove excess H2O from the web. 
4. Use microwaves to remove excess H2O from the web 

These methods are currently being explored.  
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